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Notation

a, b, 6, t, r are the coefficients of the polynomials for

the Unknown functions, u is the axial velocity component, v is

the velocity component which is normal to the nozzle axis, p is

the pressure, p is the density, T is the temperature, e is the
tangent of the angle between the velocity vector and the nozzle

axis, F, 4 are variables in the coefficient equation, q
is the flow density, k is the heat capacity ratio, r is the

radius, n is the mean isentropic flow index.

Subscripts: k is the nozzle contour, cr is the critical

cross section.
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METHOD OF CALCULATING THE FLOW IN A CIRCULAR NOZZLE

Yu. M. Danilov

Currently, there is great interest in calculating gas flows /60*

in the subsonic and transonic parts of nozzles with large

gradients of t-he gas dynamic parameters in the direction which is

normal to the axis [1]-[3].

In article [4], the direct problem of optimizing nozzles

which operate on gas with condensate particles was formulated.

The variational problem was solved numerically for the supersonic

part of the nozzle. The parameters of the flow in the initial pro-

file were assumed to be given. However, to completely solve the

problem of optimizing the nozzle profile, the initial conditions

for the method of characteristics used in [4] are the results

obtained from calculating the flow in the subsonic and transonic

parts of the nozzle. The use of methods [1]-[3] for this purpose

is difficult, because of the excessive computer time needed to

solve this problem. In this article, a modification of the

Newton-Kantorovich method is proposed for calculating the flow in

the subsonic part of the nozzle and for obtaining the init'ial param-

eter in the method of'characteristics-, Which is speciall]y tailored to

the solution of the problem. While the accuracy of-the results is the same,

the machine time needed to solve the problem is reduced consider-

ably in comparison with the solution obtained by the method

described in [2].

The equations of gas dynamics are written in the form
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a5 Or p dx
UdT atV I+- p +A-(1)u + r + -.- + As= 0.

xT( d A 0.

The terms Al, A2, A3
, and A4 take into account the possibil-

ity that the suspendedparticles which are present in it can have

an effect on the gas flow [5]. For a pure gas flow (the suspended

particle concentration is zero) A
i

= 0 (i = 1, 2, 3, 4).

The velocity is referred to the stagnation sound velocity /61

and the density, pressure, and temperature to the corresponding

magnitudes in a gas at rest.

We consider the case of a flow regime when in some cross

section, which lies in the most narrow region (the throat) of. 

the nozzle, the velocity of the flow is equal to the local veloc-

ity of sound. It is known that in this case in the throat of

the nozzle, the integral of the mass flux attains its maximum:

rk

ql'-'r=[ j2 rpurdrl ;- (2)Lro (2)

To facilitate the formulation of the boundary conditions,

we make a change of variable. Instead of the independent variable

r, we use the dimensionless ordinate

'VY b9 ?
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which :is the ordinate referred to the ordinate of the

contour of the nozzle in the cross section under consideration.

Instead of the unknown v (the projection of the velocity on the

r axis), we seek the tangent of the angle between the velocity

vector and the nozzle axis:

,J

In the new variables, Eqs. (1) take on the form

:u. : + A -(yey-o) d i+ PU d + P 

j -- + 2 +- --. [u(o yo ) u + - ( 3

X r( dy ay a y)

A ) 0_+A; 0

The region of ration becomes a cylinder with an 

extremum condition for the maximum of the flux near one of its

us o (o - OU ) a,, + u' (o -O, )O 

. oKr K A' ay L OX pi . y
,.i) Ts + A; -O.

The region of integration becomes a cylinder with an

extremum condition for the maximum of the flux near one of its

ends.
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The boundary conditions are:'.

a) The condition for no flow through the wall of the

nozzle Oly = 1 = K;

b) The symmetry condition on the nozzle axis

elOy = 0= 0;
c) The condition at infinity O(Y)"x = 0 = O.x

(4)

(4a)

(5)

Eqs. (3) are of the elliptic type in the subsonic flow

region. It is known [71 that analytic solutions can be obtained

for elliptic equations. If the region of integration along the

flow is bounded below by the limiting characteristic, the

unknown functions (u, 0, p, T) can be approximated, on the basis

of the well-known Weierstrass theorem,,to any degree of accuracy

by algebraic polynomials in two variables (the coordinate origin

lies on the nozzle axis in the section x = xO, where 0(y) can be

taken with an: accuracy sufficient for all practical calculations

to be equal to zero):

*, = o [/, . O y[ok + b, (y - l)x'] ,
(/)' (I)

i)) (U)
4WA O.~Z~ ~JO 2.. 1 1, 3,...).

(() ((1) 

P; [.l n-is)2 c(I o2)] + r,,YlS (s=0,2,...; 1 ,1 3 j
l . - ~~~~~~~~~(S) (l ). . _

/62

(6)

Here, x1 is the abscissa of the point where the rim of the chamber

makes contact with the output part: of the nozzle (see Fig. 1).
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J. ~The form which is selected to
'Q C- " '~ . represent T and p must be such

HC | _that the solution process is stable.

_0 X 4 The polynomials for 8, when

, x = xl, are matched using the con-

Fig. 1. Nozzle contour. ditions:

14, °--- 02..' -

The boundary conditions can be satisfied exactly by choosing

appropriately the coefficients of the polynomial for 0.

The formulation of the last boundary condition, for setting

up a flow regime with maximum flux in the throat, requires

additional explanation.

In the beginning- of the solution the distribution of the

flow parameters in the cross section of the nozzle in'

the region of integration is unknown.

The absolute maximum mass flux q is attained in the

throatof the nozzle if the flow is uniform in the section

x = xcr. For any arbitrary form of the contour of the subsonic

part of the nozzle

Jman x,_,c< Smug,

To satisfy the condition for the maximum flux in the throat, /63

it is necessary to solve the resulting variational problem of
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maximizing the functional (2) with the nonholonomic relations '(3).

The field of flow parameters in the subsonic part on which the

functional (2) attains the maximum and the boundary conditions

(4), (5) are satisfied is the solution of the problem which was

formulated. The variational problem which was formulated can be

solved, for example, using the well-known method of Lagrange

multipliers [6]. However, when the latter is used, it is necessary

to determine these multipliers in the solution, which increases

the number of computations. Therefore, the solution was obtained

differently.

In the class of functions (6), the problem which was formuA

lated can be reduced to the problem of finding the maximum of a

function of a single variable coefficient 4 k' if the remaining

coefficients are expressed in terms of this coefficient on the

basis of the system of equations (3) and the boundary conditions

(4), (5). Then (2) attains a maximum when the relations

q = d4 t °(I , 1, ,k(I) k k "(7)

are satisfied.

df i

To determine the derivatives dp the information is used
d~k

which is contained in the matrix of the system of linear equations

for the method,which essentially is the Newton-Kantorovich method

for the solution of nonlinear functional equations.

Suppose that an initial approximation for the values of the

coefficients of the polynomials is known. The latter can be

obtained, for example, by approximating the computational results
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which were obtained in the one-dimensional approximation. We

introduce the corrections A for the values of the coefficients

4i in such a way that in each successive approximation the

coefficients of the polynomials will be calculated using the

formula:

Here, r is the number of the approximation.

Then the process of solving approximately the system of

differential equations (3) can be replaced by the process of

solving iteratively the system of improved equations

.,f. , . _( ,/ 
~ ' + Fg'o n 0 (1,..., 4) (9)

using the Newton method on a finite set N of points in the inte-

gration region.

The system of these equations is an overdetermined system

of linear algebraic equations in the corrections A4i.

We require that corrections be found which satisfy Eq. (9)

in the.best way (in the sense of the sum of squares of deviations)

at the points in the region under consideration (the least

squares method). This is achieved when the following equations

are satisfied:

mr-I
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As a result, we obtain a system of linear algebraic equations

from which the corrections ASS are determined. The augmented

matrix of this system has the form

Asl

A,,

"In-I. I
An. I

I Free,
,_,__7_ A?:, I... *I",-I IIinr

.... I IIIterm

Al 2

A2,
A32

,_,... ,
An--. 2

AfI. 2

A23

A1. .
An-,. 3

An. 3

AI. ,l-2
. .1-, n -

. ..

. n-2. n-2
. An-,. n-2

. In. n--

I 

·A n-I

An-, n--IAn-tI. pi-I
; Anf. n-,

/ 1. n
,I 2. n

/1S. n

'An-2. n

II
112

-,,

in

(A)

The matrix (A) is used to find the derivatives in expression

(7). Interchanging the columns for the coefficients of A k and

ABn, and applying Gauss' direct elimination method, we obtain the

triangular matrix:

Free
?, 2 .. j, ... |1 _n , "| term

I l.. C., .. C ,-2, C,. n- C,. k D,
(B)

Clearly,
n ( :_ls) C

d (AI) . n-I. k

d ("1,,-T 2) .-= cR.. k + Cn-. n.-I (Cn-l,., ) -tc.
{d (Ap?).
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i.e. the derivatives d(Ai)/d(A k) can be found by the backward

elimination method, if the column of coefficients of Afk is

transferred with opposite sign into the column of free terms,

and the elements of the k-th column are set equal to zero, except

the last, which/-is set equal to 1. In this case, the augmented

matrix will have the form

d(a?,) d(A?,) 1 d(&r,) dI 0*) I d(*) (A
d~dlh I(A d(a?) I'lJ? d(-,) d(a.- ,) d(O?)O

I

I

Co,.. C,$
Cm

C,. ,-,

C 3 . n-,

'j1

C, n-Cl. n-I
Cs. n-i

Cn. n-

0

0

0
0
1

Ci *
C.' k

t.. 
("a. k

(C)

Matrix (C) corresponds to a linear system of algebraic

d(Ai)
equations for determining the derivatives d(

But according to (8)

#d (4A1) _. d'dt (Abri dt 

Thus, it is possible t
~ 

- o Q4 0,8 R.2 4.6 t

Fig. 2. Velocity distribu-
tion of the flow along the
length of the nozzle.

o find the derivatives of all

coefficients which are necessary

for the computations from the co-

efficient which was taken as the

independent coefficient. This

means that the variational problem

for the extremum of the functional

(2) was reduced to a problem of

/65
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Nozzle axis t ff

Fig. 3. Change in the form of the
surface in the transition through
the sonic- velocity vs..r2.
1 - Contour of the nozzle and sound
line for the nozzle with r2 = 0.5,
2 and 3 - same for nozzles with
r2 = 1 and r: = 2.
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Fig. 4. Change in discharge coeffi-
cient of nozzles vs. rounding radius
of the profile in the throat.

finding the extremum of

a function of a single

variable, a problem

whose solution presents

no difficulties.

Eq. (7,), after the

definite integral in (2)

is replaced by Simpson's

formula,:gives a non-

linear algebraic equation

which can be used to

detemine the independent

coefficient. This co-

efficient can be any

coefficient in the

polynomials (6).

Using the sequence

of operations which was

described, it is possible

to find polynomials which

will satisfy the boundary

condition exactly, and

which will satisfy the

differential equations in

,the best ways in the mean

square deviation sense ,

The algorithm for
solving the direct flow problem in the nozzle with the given
form of the contour was coded as a program for. the "BESM-6"
electronic digital computer. The computations which were carried out
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for a series of nozzles demonstrated the high accuracy of the

method. The accuracy of the solution was checked using the inte-

gral rate equation. Computations have shown that the rate error

in the region of the nozzle throat does not exceed 0.2% and in-

creases somewhat (up to 2%) as the distance from the throat of

the nozzle to the depth of the chamber increases. The computer

time needed to solve the problem using the program does not

exceed 30 sec.

Figs. 2-4 give characteristic computational results.

The flow in the supersonic part of the nozzle is calculated

conveniently using the method of characteristics, using as the

initial conditions the results which were obtained with the aid

of the method presented above.
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